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1. JINTRODULTION. Since its inception integer linear programming
has, paradoxically, besn a source of boih promise and disappointment. lro-
mise because there are manifold and compelling oppertunities for iis appli-
cation; disappointment bacause it has mede only the most dublous progress
in spite of lhese opportunities.

In contrask, the remarkablie growth of traditional linear programming
is well known. The question arises as to what causes this difference.
Harcld Ruhn and aichard wuandt cite tarese factors to account for the success
of linear programming. é/ They ere (a) its flexibility and wide renpe of
application, (b} the parsilel development of large elsctronic computers, znd
(¢) the discovery of the simplex mathod, an efficient alrorithm which solves
problems at a reasonable cost in time., Of these factors. the one wbiczh szams
most nearly to explain the contrast between the ascension of traditional
linear programming and the lagging debut, of its integer relative is the
last. 'There are no integer programming aliorithms with the high elficiency
of the simplex method.

The difficulties with the inteper alporithms zre of fwo distineh
tyves. Iirst, there are many preblems which appear wholly impervious to
them, though tne algorithms are theoretically assured of finding & sclution
second, the algorithms give fickle performances even in solving these pro-
bleme which are more tractable., For this latter category of problens the
success of the integer algorithms dep:nds heavily on the sequence of ceiect.
ing pivotal censtraints. Frequently & problem which requires zn inorciniate
number of pivots using one sequence will yield after a fraction of thet
number to another.

It is sometimes possible, by examining an efficient pivot seguenca

for a apecific problem, to infer a .eneral rule which will work =ell on the




problem investigated. Unfortunately, there seem. to be no existing rule
which is good for all problems, nor which makes any appreciable inroad into
the large regicn of problems which unifornly reeist the efforts of the best
alternate approachss.

The initial purpose of this study was to secek a strategy of pivot
selection that would abandon the profligacy of existing rules. The algorithm
st the focus of our investizatioms was to be, and has principally been, the
all-integer inbeger programming algoritlum proposed by kalph Gomory in ~anuary
1960. 2/ However, as our work has progressed, wve have developed twe supple-
mentary techniques, based on ths simplex method, which may be applied inde-
pendently of any specific rule of choice. One of thess, the New Origin
Technique (NOT), deseribed in Seetion 4B, has proved gufficiently promising

presented in this re=

port. Thua we have come to attack the lardinass of“fﬁe intsper prograaming

to earn a distinguished position among the strategie

Cis g e L
algoritmgﬁn two ways: by developing and testing rules for selecting pivotal

constraints, end by intreducing two methods for boosting the problem toward

sclution before the pivet rules are applied.

e THe ALL THPGER TATEGel FROGRARMING A\GO:ITHM. Gomory's all
A Pty w3

st

integer integer programming algorithm resemblls the simplex in several ways.
ihe distinguishing faaturs of the algorithm is the creation of & transitory
nonstraint which is used for plveting znd then discarded. Underlyin this
feature is the principle that each constraint in the all integer tableau
impliss the existence of a special sai of sscondary consiraints. The second-
ary constraints must all be salisfied by any integer solution to the oripinal
problen, and «re eligible for pivoting if and only if the constraint which
sired ihem is eligible. The precess of pivel selection consists in ch:oaing

ong of the eligible constraints from the tableau, and then locuting the




unique secondary constraint which satisfies the following two prorerties:
1) it has a pivot element of -1, and (2) of those constraints sharing
property one, it ceuses the largest decreass in the objective function.

The "new pivotal constraint" is temporarily emnnexed to the itableau so that

the pivot operation may be carried out on it. Afterwards il is discarded,
end the process repeated.

In Gomory's tableau the consiraints correspond te column vectors.
The new pivetal constraint is uniquely determined by the elipible constraint
from which i{ is derived. Hence we will spsak of pivoting on a column in
the permanent tableaun, though the actuval pivot operation is carried out on
the derivative column. For the convenience of the reader, Gomory's alporitho
is outlined in its entirety in appendix 4.

3. EIVOT LELECTION RULLG. A column in Gomory's tableau is elipgible

©

for pivoting whenever its bottom row slemwent is negative, hence the cheice
of pivots moy be referred to as a choice among negative indicalors. There
are clearly many strategies by which cuch choices could be made, Though
some limited vslue might come from testing rules that have been fabricated
arbitrarily, we have chosen tc restrict ourselves to rules for which we
could give some inmtuitive, practical or theorsticol justifiecation

A. First Nepative Indicator.-The first nezative indic.ior rule

says te select the eligible colunn wath the least index. In his paper on
all intejer proyramming Gomory cites this rule as one for which a rinite
number of pivots is puaranteed. Ihs advantege is it extreme simplici;y;
the computer wastes no time between pivot operations. (ampared to any
svle which requires the same number of pivots, the first negative indicaic -
rule imst prove at laast as efficient

B. sandom Fivot Jeiection.--The name of thisz ruls is its deosorijticn

it simply divects that a negative iwdicator be chosan ol random. Like the
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first negative indicator rule, #the raandom rule works rapidiy. horeover, it

is a norrative rule: hopefuily we shounld expect any truiy effective rule to
do as well., Finelly, the random rule makes il possible to gel an idea of the
distribution of the number.of pivots required te reach solution by making
suceessive solution attenpts on 2 singie problem with a variety of rendom

number bases.

. handonm ltestart RNule--Qur early experimeniatilon with the random

pivot cholce rule showed us that the variation in the number of pivats re-
quired to solve even the more managsable problems by Gemory’s algorithm waz
exceedingly large. Gmall problems wers almost as notoriocus in this respect
ag larger ones., A six variaple six inequality problem ha& to be taken off
the computer unsolved after 5,600 pivols using one random number base, vet
was soived in less than 40 pivets using another. The thought raturally
arises that a program for arresting work on & problem after a pre-estsblished
number of pivots, and then starting anew, might pay off in xore consistaeni
results.  Any stop rule at these early stages of experincntation must be
rather tentative and arbitrary. =nd part of our efforts in this area have
accordingly been to find a guide by which such & ruls could be set.

D, Random Boost hule.--The raundom beost rule is an attergh Lo make

3

use of informution which the landom Hestart kvle passes by. Each try for
a sclution with Gomory's algerithm establishes a lower hound to the ob-

Jective function. The random toosi rule embodies tnis lower bound in a new

constraint which is pivoted on and satisfied before all others are considered.
Once ths obJective function atvains the lower bound of the previous solution

.

attenpt, the algorithm proceeds fer a specified number of pivots and then

passes alonyg a possibly new bowid to Lhe next alienpt

There i3 considerable simils ity Letsgsn this rule and bhe Hew Con-

straint Techniiue in Section LA, ior an elaboraiion of the mechanics of the

=D the latter

procadure sea the dismusaion ~f laite
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E, haximm Frequency bilcsible hule.-~The baximum Frequeney Lligible

hwle is to select that constraint for pivet which was most frequentiy eligible
in the pust. Its use was suggesied by experience in hand testing Gomory's
algorithm, where it was found that an excessive number of pivots was oflen
required to reach a'solution when avoiding a consiraint consistently eligible.

F. (ardinal Learning l'ivot hule.--This rule and the next, the ordinal

learning pivot rule, take a new direction in pivot choice stratepies. They
are based on the psychologieal model of reinforeement learning, according to
which the organism can be induced to zequire a gystematic pattern of behavior
by rewarding certain responses and punishing others. 4 formal structurs of
multiple-cheice situations has been d@velopedl/ virich has already been applied
outzide psychclogy by Figcher and Thoupson in the ceastruction of job shop
scheduling rule L/ The present atteust is to extqnd the mode. te the process
of pivol selection in intejer projramiing.

The rathematical model of reinSosrcement learning pesits that the or-
ganism is endowed with o probability vector describing the Llikelihood with
which he will se.ect each of e set of alternatives put before him. The choice
cf an alternative which meets with reward produeces & change in ke probability
vector which increzses the chances that the alternative wiil be chossn apain
Sumilarly, a punished aiternative results in a decreased iikelinced thot it
will be chosen again.

The cardinal learaing pivol ride is designed in this fashion Lo roware
and punish pood énd bad pivot cholces. A "jood" pivot eholece 1s defined to
be one which produces a relatively loygs ilncrease in the objective function,
~ "bad" choice. similerly, implies & "swmall! Ilncrease. In the roubine we
used, a performance record is kept for each column in the Tsbleau, measuoing
Lhe mean contribution to the cbjective Jwictiorn for which that column ¥ roe
aponsible.  (Other criteria of performonce srs of course possible; for instu.ce

the maximun objective funclior charsz could Le used instead of the svemn-g. or
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the fractional change substituted for the absolute. at a more refined level,
Lhe probability welghts assigned %o the cheics of counns nright be based on
the trend of their performance, higher priority going to a column whose per-
Yormance 1s steadily improving than to one whose performance is deteriorating.
An additicnal refinement would be to consider columns in conjuntion, gauging
the relative morits of alternative ecycles of pivot choice. )

The particular version we progvammed for the compuber initially seg-
re.ales the eligible colwns into three groups: {a) the colurns which have been
shesen tor pivoting in the past, (L) those columns which are presently
gligible for pivoting, and also merbers of the first group, (c) those
culumns which are wresentiy elipible for pivoting, but which arve not
mapbers of the first group.

Agsociuted with each column in group (a) is the information telling
the Lotal objective function change due to piveting with that column, and
the number oi times which the colwan was used for pivoting. From this the
avera ‘e objective function change due to chocsing thal column for pivot is
compuied, and then squared 4o use the s uares rather than the means them-
selves in determining the probability with which each eligible column is to
be salected in order to acceuntuate the difference in weights assigned to
columns with rood and bad performance histories. The probability weight
agsigned to a member of “roup (b) is sim:ly the squsred value for which it
ia responsible, lach rmember of group (¢), on the other hand, receives the
same probebility weipht. which is equal to the mean of the squares associaled
with proup (a).

This rule iz called the cardinal rule because each colwan which has
previously been pivoted on is always assigned & weight determined by its indi-
vidual history; lov exanple, column number 7 will be considered for pivoting
according to its own past performence, rather than on the fact that, frem left
Lo right in the tableau, it is at present the third of the columns which are

ciipible
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Te represent the rule preciuely, let a, b, and c denote the number of
columas o {a), (b), ind (¢}, respectively. The term m; will denote the nean
obgectave funct.wn chenge for which column i is vesvonsibie, and the symbol X
#iil be used to denote the seb of all subscripts i for which column i is in [x).
Then the probability P to be assigned to sslecting the eligible columm k for
pivot may be represented as follows,

1 If kéB:

ol 3? 2 .
b, = mp” {do n° + (.’:./'a)g i
’ i€ B - AL T
1. If <§¢:
oo,
Pk = (43 m. )/ 3¢, where  is the denominutor in 1 above.

<t )
JTA

G. QOrdinal rewrning Fivet luwis.--This rule, like the cardinal rule;

attenpts to encourase ood cholces with reward, and discourape bad cholees

with punishment (or "nepative" rewsra). The velilcle of reward, positive and

nesative, is a suceessively redefined vectovr which expresses the probability

with which each column will be chosen for pivot av any particular stage of

the algerithm,  wligibility acty as & restrictive operator which automatically

agsipns »ero probabilify to those columns which do not have negative indicuiors,

5}

and calls for the sdjustrent of the othier probabilities accordingly. The
ordinal »ule diifers from the cardinal in that the probability assijned to

gselectin; a puriicular colunn for pivet is not dependent solely upon its cwa

history, but wpen !ts ordinel position among the elipible colurns in the

tablesu. That 1s, «¢ will be nors interested in the fact thal a coluin is the

third trom the left of those which are elipible, rather than its precise index

in the tahieaun.

k3 it is trus of the curdinal rule, there are a number of ways in which

the ordinal eule rd bt be formulated  san intuitive version would be to eitab-

Vick an "ordinal probabliity welght vector™ containing a number of components

.

el Los0W: sulbip 2 off the nunde ¢ of columns. and keep an "ordinal bishery"
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for that vector independont of the performznce records of the individual
colamns .

is an 1llustration, if the tablean had twelve columns, the ordinal
vactor siady components, and five columns were eligible for pivoting, then
the probability weighl to be atiached to the eligible column with the least
indax would be equal to the sum of the first twelve components of the ordinal
vector, the probability «eipght for the column w~ith the next highest index the
sum ¢f the next twelve components. and so0 on.

when the pivot .sas exscuted; the result would be recorded by maintaining
two suprlonentary vectors, one to keep track of the objective function char ges,
and the other to keep track of the nurber of pivols. lf'the third of the five
elizilile columne was s2lected, the objective function chan, e would be added to
each of the awcunts in colwmns 25 through 36 in the first supplementary vsetor,
and in the second supplementary vector the same columns would be incremented
by one. Ln this wey a form of average objective function change could be
compuhed to provide the probability weights to be inserted in the ordinal pro-
bability weight vector.

The version which we used might te called a hybrid ordinal rule in the
sense that the supplermentery vectors are designed to associate each column
with its o+n hivtory. The cedinal welght vector itself, however, works as in
the precoding illustration. Por exsnpls, apain suppose there were twelve
columng in the tableau, five of which wers eligible, In this case the ordinal
vector would have just twelve components, the same as the number of colwmns in
the tablean, [ech component would be equal to the (squared) mean objective
function chanje due to pivoting on the corresponding column. columns not pre-
viously pivoted on treated the same as in vhe cardinal learning routine. Then
the probability weight to be assipgned to the first elipible column would be
eqral to the sum of the first two and {wo fifths comnonents, the probability
wei hi for the second eligible colurn e ual to the sum of the next two and two

SR

fifthis components, ese.




To represent the rule precisely, we use the notation used to describe
the cardinai rule. In addition we define (d) to be the sel of all columus,

{e) to be the set (d) - {a), and (f) to be the set union of {b) and (c).

ve let v, = mi2 if i€ B, and = (zl o )/1 if 1 € K. Let 3% = min(3: j & F).
R 'j {’B \ ] 1:‘1"
Then lot ' be defined: if j& F -~ j¥, then j' = k £ F, such that k« 3, ondiie, j.

[

i€ F, then i€ k., Finaily, define A5 = inb (a/(vte) ), Tix = 4/ (bte) - A5
Then the probability Py to be assigned to choosing the eligible column k for
pivet way be represented:

l, If k = ji:

qj%
D, = EE v tor., v ,
- 3
k T i J qj* +]
II. If k # j*
i
. { Y 4 y <
pk - ‘g(l - rkn)-‘ (V(J- '{'l) . Z;n - V.JL + I‘k ‘l‘q +l‘§/ ‘:::ﬂ Vﬁ
h K i=q, .+ k .z !
* '8 5 JEE

where r, T Q. T rj* tr,-i-g, U TE i G ”
§ .

4
,—J
po——g

and B = int { qj* it rj% + L

H. Largest Objective Function Chan. ae.--The name of this rule is largnly

selfeexplanatory. /e iearned while working with problems gimple enough to ba
lved by hand thal we often got close to the minimum number of pivots by

choosing the columns which individuvally produced the largest objective {inection
changes., In consequence we decided to test the rule on the compuize with merse
complex problems.,

because of the fairly extansive computation needed te apply this rule.
it must result in a fairly small number of pivols Lo compare favorably with
say, either the least index rule or the randem choics rule. In fact, in the
order we've presented them, the pivot rulss begin with th: one rwouiring ihe
least amount of compuler lime on any given pivol and extend Lo the one requiring

the most. If &il wre to corpave 2mally well in respcesct to the w.an tims




regvired to golve probloms, the later rules muact resull on the average in

Fowe, pi-ofs ihan tYWe carlias ames
L el LY TILIQUL Ve supplomenlery fecinagu
e attennl 1o get a "hool stars” with the Slwplex belero appl.
Gomany's 2Ll inteper odyoritim e f2lt thet there were two roasens that mirht
make sueh n ottorpt voerblwnile. (1Y s prootems get pore 4irficult, the

anaber of pivols voguls ¢ and uers TNty

slulex method Londd poesibly simplify the problen so it e.prdiant rulee of

:Ld subsetuvently uork 28 well oo wore sophisticoted onzy, cotling

TIUOLNG

Sosn the tineg coavuned ia each plvet oncratlion.
&

D51 eag. W el pildcEs e

valite of {he oblaclive Nuaction Jhatever

solution. we know thal the value for the iabeger solution (Ln the winimum

L S P That ar egasl Lo 6. The HCT, like the 'tandom
Zocst hule  involves the creation of 2 new constraint expressing this in-

then annexed to the regulsr integer programming tablesu.

I

1 v 1

The initial pivets sith Gomory's alporitam are carried oat on the new con-

P it

stoaint unbil it io satisfied, after whlch it may be dizscacded (it can

[AToR A o
nEver

be violabed) und tie »roblem revert: vo lvs usual fera The motivation for
J

1

L

this approach wes thz expeclation that (1) the number of pivots required to
satisly the new constvaint would be few, and (2) advaneing the objective
function closer to tohe sclution vicinity muy resuvli in fewer plvots being

nesded thereafter.
The NCT can be represented foimally ws follows. ‘'¢ refer fo the
standard form of the minimization problem: "minimize wb + bO” subject to
= \ m v . oS {./I - ) /
wA 2 ¢ and w2 0." The new constraint is jgiven by wb = bO o §}>xhure W

is the Simplex solution vector.




1
(ne apparent advantage of the NUT, aside from its simplicity, is that
the +ffoet put iato the simplex algorithm is never "lost'--no matter what the
form of the problem, there is always sufficient information to form the new
constraint.

B. Ihe siew Urigin Technioue (NOT).~The NOT is the most effective of

the strategiles in this veport. It has been able to solve 62% more eight
variable eipght inequality problems within & 400 pivot cutoff limit than the
second best rule tested, and in general requires from 40% to 60% fewer pivots
Lo solve thoss problems which the other methods were able to solva within the
cutofi limit. The NOT uses the simplex alyorithm, and in particular information
obtained from a tablesu preducad «t some stage of the algorithm; tc give
starting values to the variables before applying Gomory's algorithm. Implicitly,
Gomery's algorithm normalily takes the starting values for all the W to be
zere . To express the condition that some of the variabies begin at other than
a zero value, we staie the following lemma.
. . g Gl 5

Lemma 1. Givel any vector w , if w™ belongs to the solution set of the
, T - o B .0 p— 0. . 0
probler "minimdze wb + b, ¥ wb, subject to wA e ~w A andw > - w ," then there
iz 3 w¥* in the solution set of the standard problem "minimlze wb + boy subject

R

, , L 0
Lo wi %¢ and w 20, so that % = w™ + w”, and conversely.

From the hypothesis, oA Yo - NOA and wl 2 «wop hence (wl + wO)A L

‘e
P R ¢ N . 1L, 0, B . . o
and (w" T w } =0, so that w + w” is a easible solution of the standard
" (L — oy 0 O\, .
protlen. Uince w minimizes wb + by twb = (w+w)bt b09 the vsctor

1 0 . e . :
{w™ + w”) also cbviousiy minimizes the function wb + boo The converse

i 9 g ; 0
follows by considering the vactov (wh ~ v )a

.. : C . = N :
Customarily, of course, w is the zero vector. In what follows we will

r D 3 .
atteapt te compute & wL some of whose components are possibly other than zero.
’ . 3 ( = T T .
we will refer to this computed w) us the new origin., The justification for
R g ] . 5 CR R 0 )
the NOT i5 the assumption ¢hat a jocd choice of an initial w~ would reduce the

number of pivots required %o reach « solution with Gomory's algorithm. In the




[
P

, .. 0 . X . . .
extrene cuse, 1f w were an integer solution, no pivots would be required.
PR .. 0 . )
dowevar, & bad choice of W@ would mean that the correct answer could not be
obtained

‘"'wo impositions must be placed upon the new origin if a corrsct sol-
vtion is 5 be obtainad with the all integer algorithm. We embody these in
Lemma 2. To insure that Gomory's algorithm will obtain a solution

Bx ac 4 : R O R
w" (vo the Zirst problsm in Lemma 1) so thut (w™ + w~) minimizes the standard
A T . .0 . - . .
rrobien (i) the componenis of w~ mus% all be integor, and (1i) sach com-
. .0 . v
ponent of w” must be less than or equal to the corresponding component of w¥.,
. . » 0] .
1f (i) were not true, the constraints w® -w would not be. jermissible
in the all integer tableau. .le note thot these constraints in the new proviem
are 20% o be eoupled with the consiraints w & 0, bub repiace them.
To see the validity of (ii), we observe that in transforming the standard
ol B Sy Hims vy s g O g 4
problem into one with the forim "mininize wh + bO t w b, subject to
> ) . - . "
WAZ . - w A, wiiew " the swe result iw achieved as by first adding the
sy O ) : .
constraints w,ﬁ.wi to the standard preblem, pivoting on them before all
¢thers, and then ignoring thea. Henee if it is false in the solution to
. P . . :
the standerd problem that w. *axw.” for some i, then the solution obtained

by (omory s algorithm will be wrong unless the ignored constraint is viol-

eted in the preper degree during the course of pivoting.

Using information cbtained f{rom the simplex solution of the linear
programuing preblem, a new origin vector can be derived from any one of the
simplex tobleavs. In order to describe the ensuing derivations straight~
forwardly, it is converient at this point to refer to & form of the simplex

algorithm which solves the minimization problem directly rather than as the

dual of the maximum.
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w3 Will call the standard representation of the nroblem-~minimize
ab +'bo subject to whZ ¢ and wZ0, --Formulation I, The initial tableau
for the version of the simplex algorithm whiech solves this standard mini.-
mization problem directly is shown in (a) below.

Those eolumns in the tableau (&) which are eligible for pivotin; are
negative in the -¢ vector. The pivol element is chosen from among the nega-
tive entries iit the sslected column so that the rows of the tableau will re-
main lexicographically positive after the pivot.

¥or additional simplicity we denote the tableau matrix consisting of
-A and the identiy matrix I by the single letter A, replace b and O vector
by b alene, rerlace -~c by ¢; and extend the w vector so that it includes the
slack variables, The problem can then be rewirtten: minimize wb + bO subject
to wh = ¢, w20, as represented by the tubleau (b). Ve shall henceforth
rerer to this as Formulation II.

The simpiex algorithm 1s a recursive transformation which changes each
statement of the problem into an equivalent statement, summarized by the
subsecuent teblesu, with the sume solution set as the original. Hence
Formulition II is perfectly general, and (b) ray represent any of the

simplex tableaus.

(a) b) —

bl A “D A
6 L
by -C b C I

.e will abide by the conventicn that bo' denotes the vaiue of bO in the

0

fine’ einplex tableau. Since bo“ is the (possibly) fractional solution value
of the funciion wb + bo found by the simplex algorith, the integer variable
gsolution value of b + bo must be greater tlan or equal to bo“ rounded upward.

Usin; the notation <:x> to denote the smallest integer greater than or e ual
- s

L ow, we way state:
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Lemma 3. The constraining equation
(1) wb = <b0">-- E;U +p
is true for some integer p2Q for the integer problem, whers b and b0 refer
to the values from any simplex tableau, as indicated in Formulation Il.
(The lemna mist also be true, of course, of Formuiation I.)

The preof follows froa the foregoin: remsrks, since .ithout requiring
that the variables be integrel, Wb o= bo“ - bo, shere w/ is the simplex
solution vector,

we now proceed to the main derivation of the new origin vector w °

Hy Formulation IX, each constraint frem a given simplex tableau cen

be written
Ll
(2)2 4w = Co
Let i be defined by ai/bj = min { 8, /bl,) for all k such that not both a und
are zero- By convention ak/O = ~eoil a g 0 and ak/O =g if o >0,
I is assumed that i is unique.
3 = mir 'y 1 "J.- 3 ~eJunl ‘ t = ol j F

Let H = min (a'k/bk) for all k # i, excluding d.k/ok 0/0, ‘Je immediately
state tie following lemna.

< . et ey 11 A AN o i v Ao (33 .

Lemma 4. trovided H 7[- &, (1) hbk ~- ._;ks.-,O f xfi (i) Hbi ai,>0(,
We nobe that part (i) holds trivially if &y and bk are both zero If we
asaume cbtherwise, the first part then follows from the faet that Hé& ak/bk if
k 7 i. By hypothesis H / ¢ , and sirce 1 1s recuired to be unique, H —,L -4 -

# 0, Dut by the simplex algorithm,

Mg 4 vy sueh Lhe 5
Thus ol 0 for all k such that a

> 211 k for ull ; SN £ =T
bk""‘( for all k, hence b, » 0 for all relevant k, L{bk"“ak/bk) b, = & and
-~ a <0, Similarly, Hb, -~ a. »0 follos e f /b &L He
o ~ & €0, similarly, th, - a; >0 follows from the fact that al/blg, H
wWe will use Lemma 4 to derive a permissible value for the component, w 1

of the new origin vector w . Rewriting equetion (1) as a sum of variables and

multiplying both sides we obtain
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(& .“w.[{r = hornep 2 4o 3 £ R Y == o
34 2 ..nib HB, where B is defined by B <b0 > bo + p.

N
subtacting £2) feow (3) gives
S with -a)=Hp .

.\Z‘. o b, ak) HB - ¢

NG

transpose for k 4 1, and invoke Lemma 4 to obtain

JZ2HB - c.

M os Yw = HR - e - ( .
(hbi ag) vy HE - ¢ 2 w,_ (b a

y I k K

Again, sinece Hbi ~ 8 20,

(L) w 2B - c)/’(l‘ibj - &)

.
1

from which we can infer a permissible vaiue for W If we further dafine j

by / = mi . \ - = i = A i =j-
b5 8. bi min (»ak/bk, for all k, and Q = min ( ak/bk) for ail k # j,

(again enciuding al{/bk = 0/0) we can state the following theorem, the first
part of which we havs just proved.
Theoren: L. henever the following expressions are well-defined and greater

] . s 0 0
vhan or esqual 1o sero, permissible values for the components ¥, and wj of

n
the new origin vector v“are ;iven by
(1) = B o)/, - a))
il N : AN SR
O /o TR
(5L ) W, = “\B/bi\:} it H=o
(i4i) w.(' ={Lh + ¢ p

Part {ii) of the theoram follews from the fact that if H =%, then
I . . [ i
D, - 0 for «ll kw1, Hence equation {1) reduces to w.,b =<b N b+ p=3B
x ' v ce squation (1) ii o/ Mo P T2
and for the strictly correct vaive fur p, W= B/bin Ve write this in the
fora (ii) since, as we will show later. it may suffice to give p a value
slightly lower than the one required to make equation (1) an identity for

the all integer solution vector w = i#, The case for b. = 0 is omitted since
L

bl =0 for all k. which makes the objeciive "minimize wb + bo" meaningless.
(N
For this reason i) =o9 iy alsc excluded from consideration. The derivation of

(i41) begins with Z(»ak)wk = .¢ in place of equation (2). The remainder of

the derivation is a duplicaftion of that of (1), with (')7; 35 =8y and «~c sub-

sitited Lo i, 1. aooad oo Thes we st wj:{("jj re)/ (.'ibj t 'clj) as the




e L) loasver, from the knewlesdge that each constraint conteins

O

~

<
~r

& beaie verloble, e can conclude thai, mijo.(~'ah/bl,)= ~1/0, and b, + a'j =1.
Kk J

Part (id1) veolleus and the proof of Theorem 1 is complets. We remark that any
. = AR oA e 7 0 IS b g
voiponent of Lhe neu origin vector w which is left wundet2rmined by the
equabicrs o Theorem 1 s aubomatically ausignad the valus zero. If a component
of i: determinec to have diffesent ron-zerc values by several constraints,
it is resgonchle Lo assicn it the largest of the values.

for o givea constraint, it is noct 2lways necessary to coupute both

(L) . M o oc
voooead W, as the Folliowing lliustrates,

. - N < 0 . 0 ] .
rrovided B #.2, (1) if w, >0, then Wy = 0, and {ii) if
L
v, w, T = U Te peove this s fivet prove the following two lemmas,
Lemes 5. B0,

- 2 ) e
Lemms 6, If H  =», then & £ 0.

+p, pZ0

r
(13
=
W
o
=
i
-
a
Z
[%7]

L q.q = v A
by racelling the dafinition B = {})09 bo

(p tuteger). and notiny thub the simplex algorithm increases the value of

Ia Lepwa o, <l ~a /b Ffor soms subgceript m other than i. Jince

« = min (a /b Y o W10 k3f §, Wg <H unless m = . But then H = aj/bj = /0 = o®.
0

To wreve (i) of Yheorem 2, we ncte that, since Hbi - Ay 20, if Wi =

-"..- no B ) LY a7y D . “ .
COE - e}/, o ow, ) M0, then HB - ¢ 2 0. Taws -H3 +c {0, and since

wem sHand B0, o8 oo 3

2 - o A ] Q9 _ . )
- Wi o CHE oo 70, Pvea which w]. = 0 follows at once. The
peas? of (31) procesds simidarly. 14 nuay parenthsticsally be rewarked that the

. - - . . s g o=
provisics H §-¢7in Theorem 2 is nore restrictive than necessury.  since

(R v =\ o] 7 i Y P T ST, X T My = 2 Por all ke
e oa /b o= omin o /b ) For Lo i, B o=oe™ipplies a) /b Z” for all k other
m/ o Kk i ) ! Kk

thay ¥ = 6 ond ¥ = n, providsd not bolb Hy #nd bk equal zero. Hence 1f theim

. . 1) 1+ : z 1 = n .
ig an jndex p vor which a_ # 0, n#m, n¥i, thena /b =a =g .
< e = ¥ » 2 IR » n/ o Hfbm » and
tae subscript |} cefined oy aj/b, = 1r1n(=:3.kj‘bk) for all k, is nonuniqus,
3 !

o . ,
hance \-:J. = () by defaalr
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The last remark defines the limit to which Theorem 2 may be strengthened.
1 : at B R N - EY 0 0 cd s
1t ‘¢ not true, for example, that at least one of W, or wj must bs positive.

. . _— 0 :
~.f zero is the only permissible value for wi there is nc guarantee that
o .- .
wj will be any better.

In order to use Theorem 1 to darive a new origin vector w , it is
nacessary to find an acceptable velus for p. We note that (1) must be true
for vhe integer soiubtion veclor w = w¥, and <e obtain the defining =quation
(5) % = (¥ + b o ¢ “>
L5) p o P
if b and bo are teken from the initial tableau, it can be seen that p* repre-
sants the difference bsiween the objective function value for the all integer
solubion (wkb + bg) and the cbiective function value for the solution with

%,

the sinplex algorithe (bo“ =y'h + boﬁ w' the simplex soluticn vector), where
the latter has been rounded to its next highest integer. While p* is the
one strictly correct value for p, if H{()for all ths constraints for which

&

v q . . . g
W >0, the only dangeir is im choosing p too small, since only then would the

O e e byes 3 -] 1 - e 3 2 'P = N
w, bs larger than implisd by the correct valus, The same is true of ¢ and

L
¢ . 2 ‘ . 3 I
thez w, . Uonverssly, for H er w70, the risk is in chooaing p too larze.
4

it is fortunstely pessible, by being systematic, to reduce both cases
t0o one. Gomory's algorithm. like the simplex algerithm,produces a new ob-
jeetive function value in pizce of the oxijinal bO with each successive pivot.
For eny specified tableau obtained by Comery's algorithnm we will denote the
current objective fuaction value by BOo

- . L - L 0 0

The oreocedure is to begin with p = 0, determine tne W, and w‘j and
shart Gomory's algorithm. There will be soms cuteff value for BO which, if
trenscended, will indicate that the choieo of p was unsafe and that the Wy

and w.o nead to bte revised. A% this point p is increuented by an appropriate

amount, the new wio and w.o determined, and the process repeated. The process

can be formuluted precisely as follows
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The NOT Procedure:

(b) Determine the new origin vector wo on the basis of p = Pg-

(¢) Determine the isast integer P> Py Wuch that assigning p the
value P will yleld & different value for some componant of
wo than by giving p the value Py

(d) Apply Gomory's algorithm to the problem "minimize wb + bO vwob
subject to wille - wOAD w wwop "shere b, boﬁ A, and ¢ are from
the initital formulation (sze Formulation I, page 13).

(e) Let BO represent the current objective function velue taken fronm
a specified tableau for the problem in (d). If, after any pivet,

/
&PO:} * py. give p, the valus p, and begin again at (b).

EO >
() 4f the condition in fe) is not satisfied, wo was suitably chosen,

The objective function value BO = bo* and the values of the

variables wj displayed in the final tableau to the problem in

(d) are the soluticn values for the standard problem "minimize

Wb + b subject to WAZ ey WO
J

- . 1
He remark First on the second statement in (f). Let w™ denote the all

integer solution vsetor to the problem in (d), Under the assumption that w
. By o oL (0] e S .
ig suitably chosae, we have shown thet v~ + w 19 the all integer solution
veutor to the siandard problsm in (f), The objective function valus BO = bO*
given by the final Gomory sableau for the problom in (d) satisfies the equation
S [ O 1.0 = i .~ lue for tr
I bO +wa = (w +w)bt bO and hence is the solution value for the
(8

0 > s 4 s W2 oo
objective function %o the problem in {f)., The effect of the constraints wi -w
in the initial Gomory tableau is to replace the zero vector beneath the -1

0 .
matriy for the standard problem with the vector w . Thie "starts" each w,

at, w.Q rather than at 0, so that the final w vector read from the tablsau is

;

W VO; rather than Uu, as the second part of (f) claims




[
pXe]

Ae will now prove the validity of the NOT procedure with the following
Lheorem.
Thecrem 3. Assume that the NOT procedure has been applied & specified above.

(i) I B "> + P;» then the strictly correct value of p, pitZ P

CEANY
(i3) ir bo"i' :\?0} + Py s then po_é_ JiEe Py» and bo* is the corract objective
Funetion solution value.

s Tirst prove Theorsm 3 under the hypothesis Py <pr.

Te prove (i), suppose Pty Py By the defining equation {5) of p¥,
wih + b() (:bo';\ < Py and hence witb + bo.( <boi> i plc Applying the

hypothesis of (i) o this last equation we get

{5) weh + by <do
e .o . . . s ] 0 e
Bvi Lf Py & P < D » then the choice of kg determines the same w  vector as p,;

Therefore,. as ve have remarked, Gewory's algorithm applied {o the problem in
() of the NOT prozedure must display the correct selution to the problem in
(£} in i%s final tableau. Since the algorithm increases the current objective

otonically with each pivel, B & w¥h + bO , contradicting (6),

funetion 3, mon 0

0
Consequently p*72 B
For (1i) x Ther from {(5), wb + by « { b ")
For tii) we guppose p¥>p . Tasn from i5), wH 0~ P );;, 2]
ad ¥ + by (B4 p . Uy the hypothesis of (11) this yields w#b ¥ by > bo¥,
N Uy -~
oy in other words ile inteser objective function value bo* associated with a
. . g o . : o g
ble solubion lw v w ') t¢ the problew in (£, is smzller then the miniwum

Taasi

objeciive funchilon value whh + bO"’ which i3 impossible. The conclusion

+*
Te prove the second half of (ii) we note that if poﬁ p*é P« then Py
detzriines the same HG vector as ph and bOz"r is the correct objective funciion
valae of (£). On the other hand, if p¥ = P s then by the same sequence of
reavoning &5 in the preceding paragraph bo*f_ wih -+ bo, and hence bo* = ywith + b09

confirming that bo* is still the correct solution, and (ii) is true.
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vhe complete proof follows the preceding psttern inductively by starting
as in tne NOT proceavre with Py~ 0. Tlor this the hypothesis p¥z Py is satisfied,
and th2 proof of (i) shows that p¥2 p, Must continue to hold as long as the
LOT procedurs is itorated according to instructien (o),

“he validity of the NOT procedure follows immediately from Theorem 3
girce 6r (1) is is assured what the condition in {e) will not be satisfied
uless vhe procedwre can subsequently find a value for Py whi.ch will produce
the sane wo vector as p¥, and by (ii), it is assured that the procedure will

stop with b ¥ equal to the correct objective function value,

0

The question arises as to which simplex tableau pgives the best new
origin  The finul one ssems a logical cholce since in the ilmmediate vicinilLy
of the simplex solution the only veriables which must have positive values

will pe in the simplex basisg. As p grows larger, however, the possibility of

new vartables becoming implicitly nonzero will increase. In the actual tests

meue wivhi the NOT, beth the imibial and final tableau were used fo generate

0N

C 0
Lhe w, wd wj and the values compared.
RN
I ordght be guersed  thai since sach tableau smplies the same solution set,
{

- . , 0 0 . .
the vaives for the Wy and wj would be the same regardless of which tableau

8

was sciected For their derivation. Intereotingly encugh, this supposition is
& 1S Fi

wrong o It is even nessible to construct problems for which the values of

P
L

Y .
sepie of the componsnts of w are worse from a later tableau than from an

)

o)
Lad

+

piier one. A uniformity that does hold, however, is that for the constraint

.

. . . . 0 o .
used ao pivot the 1L end j subscripts of LA and w, switch values, and the new

w.o aguals the old w40, and vice versa-. The proof of this is given in Appendix B.
g i
There is additionally the question of whether the NOT ought Lo be used
o ansizn positive values to the slack variables. The argument asgainsi assigning
velues Lo the slacks is that this increases the reyuirements to be met by the

nonslacks. In conseguence it becomes more likely that too large a value for

the obizetive funelion will be imvlied  Un Lhe other hand, positive slack
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values mry speed up Gomory's algorithm if they are nearly correct. The
ouestion here tles in closely with the question of ths new origin technique
and feasibility, soon to be discussed Only practice can decide the matter,
and tests of the relative performance of the NOT under the two methods wero
conductad &5 part of the experimentation procedure.

The NOT and Fesgibility.--Froblems cxist for which the NOY is unable

" . . L 0
te reach the minbium solution, using permissible values for the Wy and
(R 4 ] . .
W, , within a reasonable number of pivots. For some of these problems the
NOT can be nedafied to find a solution which satisfies all the constraints.
even though it may not give the theorctical minimuw. To accompligh this it
is necessary vo relax the restriciions on the permissible values of ihe
o 0
W, and w, .
i J
Jren the objective function rsaches the cutoff level Bo;r<p0‘>f pl
which sipgnals thav by was nnt safely chossi, instead of indicating a return
. . N o 0.
te instruction {b) and & revision of the w vector, the NOT procedure allows
Gomory's algeritlm to psrsist for a spscified nmuber of surplus pivots. An.
solution found will be feasible, and can ba recorded. Thereupon the NOT is
gsed back on the course it would heve followed if ne digression had occurred.
3¢ leng as feasible solubions ave permiiied, 1t is expedient to go one
step farther and sllew the initial vaelue of Py to be the negative quantity

PR
b@ 2 &bo“>p This effectively makes ihe first values for the components of
i 3

o 0. A " .
w o, when w 1s derived with respect fo the final tebleau, the same as the

values of the variables in the simplex solution, rounded upward.

5. DusIGH OF L FuRINENTS 0D MELTCUAL fwisULTS .

3

The bulk of ths problsis on which the pivot rul.s and supplementary
techniques were teshed consisted of eight variables and eight inequalities.
The objective funciion vector was randonmly generated from the integers 1

through 29, and the shsolute values of the coefficients of the constraint




vurooolgs vandoinly seneraled with range 0 to 29. Kach entry in the A matrix
Tt owentor (Lelaning o the natotion of Fermulation I, page 14) was made
Godve U e iy 0T The avaoluie values of the ¢ vactor components

ie !l analonly et vsnr Qe B9 Froblems which twensd oud %o have no feosible

KAE, O <
vl vzve been omddted Jvem the folloaing diseussien.

the poem plvet rule wae used with the supplermentary techni.ues,

G ML R a8

o\ Dasauns Llen scourring uvuder other pivet rules fer the cheice of the pivovel

£ vy
LB SRR & :

prorasd by radow gelasticn, we have tested each rule® Tour

fiaze onopach rreblem by dltering the randem aumber base.  The firot negative
4 o [ ")

suter eule. which has ro random elemont, is of course sxcepted. An upper

tied wiiformly to ell

the rules so that re problem was allowed

Aol o]
gt g e relevant. ceoor tad v descending order of lmportance, they are:
A G el R e A a mile solved ab least once, (2)
hes botal oebg of #alebicn attenmois, {3) ke wean wnd standard
deedicgion o b vesrved oo L sghutien, (4) the nean and standard

desd Lizy of Lhe nemer o viveobs oo vired Lo reech 2 solutlon.
Vi golas wers tosted on glzty~eipht 2reblems, with decisive results
=7 a7 sieol’oity of thz peuoiens pe fule except the HOT wos zble

2 trem, The soroad bast rele, the Larpest Objective

Fraehion Shunce Adi:, suncesfully salvod aaly 32 of the &% problems (L75)
al lennh once,  The &7, by compuriscn  solved 52 problums (76%). By allowing

£

oo noeersaprily (heomadaus the power of the KBOT was ex

ibia soducions

PPN ' . . . s A . . RET. oS
aheatad -t‘-‘«::‘s'X]‘:”: @Tl'f.i:),“lf‘._: it to give vishiers annt ne’JeSSdl"lly ‘.’)}JLJ.L‘;CL—L) T 03

b osafer oth Yo the pivot rules and to

N A 1 S i A SO I (R ) o o
e gt e dec s e Ldos Tealse o will o

.
1

* AN L ke U s SRRk
tele auiplencutary bacenioqeas
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in vontrast to the wide difference between the NOT and the Largest
Ozjeciive Munction Change Rule, the remoinder of the rules differ from each
other by much smaller degrees, the ranking along the four scales becoming
mixed. Intersstingly, the rales were very nearly unanimous concerning the
provlems they failed to solvs. Exaetly halfl, or 34 of the 68 problems, were
unsolvad by auy of the rules othar than the NOT. The 24 problems solved by

ne Rardom Beost lLule, which was the worst, were also solved by all the

-

olhers, aad the 29 solwved by the Ordinal Learning Rule included enly two not
asong Lhe 31 solved by the Maximum Frequency liigible Rule. No other dig-
srepancy was greater than this,

There weie vomewhat larger deviations among the totals of successful
gclution attenpis, and reversalsz of ranking were uob uncommon. Wwhile the
Veximum Froquensy Loigible kuls solved 2 problems more than the Ordinal

o

Learning e, 1% had 8 fever successful solution attempts.

Tabie I sunumerizes the information on the decision rulss as they were
applied to the 68 problems,

The data on means and standard devietions of times and pivots required
to obtein solutions may sometimes appsar Lo mm counter to expectation.
There are three rescons for this. First, for these rules that require
evalualien of all 2lipgible eolumns belors seleciing the column to be used
{or pivoting. the nunder o columns eligible in & tablesau will make & difference
in the time reguived to curry oub a cowplete pivoting operation, thus causing
the data for times to corrsspond insxactly to data on pivots. Second, times
were receorded by the compuler dﬁly to the nearest sccond. M ans and deviations
could be reduced or increased according to the direction in which various
times were rounded. Third, or most of the rules, those problems which Gomory's

algorithn wag cble to solve were sclved with a mean of from 30 to 35 pivots.




24
Vacaully 204 or mere of the successful soluition atiempis were cccomplished in
Lers Wi fUopivoos, aid meot of the :eeb in less then ) pivots  However, about

the sucecessful colution ciiempls required 150 to 200 pivots. The

Lentrams gurbers of pivots have produced standard deviations that
seedt UILoadosonabily lerpge.  since the mean Liues were penerally 1/3 to 1/4 of
Lhe msen pivoils, the effech of exireme times wes not pronortionetely so preat
an anfiuence on the standerd deviations an the extrems nunber of pivots.

[i is alss possibiy of intere.l to nole that those problems which
seoquired over 150 pivets on one soliblzn atiempt were often sclved in con-
sigerably Seqer pivets on ancther otiempl. As a vule, any problem solved
das anives ob least ence in U plveils or less,

Tue data for the HOT is divided into throe paxds in Table 1. The first

e, desijnoted "WOT Feseible,® refepe to 211l wroblems for which the NOT

ohicabaead o selation. whether or not the solulion wog optimel. The second part,

deabgessell sbuply THOU M refars only oo Jhese vroblems for which thie NOT did
abrant the nutieal soauticn {end geve aotice of Lhe fact). The third, called

e ein Techindons restricted to the 34

lesat one of the other rules. The data for
thrrd wart chows ohut thae NOT fouwnd the probless solved by the other rules
B the cogaer cves Lo headle

DL oshould be woled thao the D07 wes always used in the form thet seslks
foasible solvtions  Henes the oeleel nurber of pilvois alletied to solving for

Lhe theoratleal mirviaun was somewhat less than 400, On the other hand, the

o bhe wivots are based on tho nupber of pivols required by the NOT

wow cergect Jor Unstb) soiutiou the {irst time, though the solution
Lot was nosuibly only repssiered feasible,
Laenty, Forwy wad edpghty surplus pivots were tested for the NOT in

huniong Feasible solutwons, with at the most a slight advantage to the eiihty

adrprta Llvols aerk gpe Teosen for Unils seems Lo be that the larer the




velues for the new origin, the more quickly a rsagible solution was reached,
whether a vood one or 2 bad one, asc that sarlier revision of the W, Y did nct
produce either defect or advantape for small values of p. Furthermore,
Comory's alyorithm often seems to obey the principle whereby it either
solves a problem in a fairly small number of pivots, or not at all. 4s
aireedy pointed ouu, these probiems that did reguire a fairly large nunber
2f vivols on one solution atiempt were usually solved in fewer pivots on the
obier attempts

The fandom Restart Rule and the Random Ecoct hule were similarly tested
4ith upper cuteffs at 30, 50, and 70 pivots, with no significant difference
in results.  For erxampls, using the 50 pivet cutoff, a problem solved on the

irst try in 45 pivols was generally matched, using the 30 pivot cutoff, by

16T

)

solving it on thu second try within 10 to 20 pivots. The Random lestart Rule
essentailly mltiplied the solution attenpts of the uwandem ldvet hwle, adding
further evidence that Gomory's algorithm by itself was not suited for the 34

provlens unsolved by any of ihe rulee except the NOT.

Addivional Results for the HNQT.~-The form in which the NCT was pro-

s

sramned for the 68 problems referred to in Table I did not assign values to
the slack varisbles. Thirty eddltional problems were tested with the NOT,
using an uprer cutoff cf pivots and fouwr sclution attempts for each prob-
lem, two by asulgning vslues o the slacks and two not. For Lhese problems,
it appears that sesigning velues to the slacke which are close to their
correct ones does not help the alpgorithn to reach a solution any mere rapidly.
Tuis Lmplies that the algorithm would have comparabls difficultics solving
4 problem for which the simplex gave wn integer answetr,

Un four of the 30 addiiional problems the use of sluck asgignments pre.
vented the algarithm from reacning feasible solutions as good as iheose reached
by the NOT in the form in which it ignored the slacks. On the other hand, the

(T without siock assipnments was always ab least as ;jood, both in terms of
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solutions obtained and in pivots required to reach them, as the NOT which
gives values to the slacks, though generally there was no notable difference
between the two.

In addition to the study of sluck assignments, an examination was made
of the compurative merits of the initial and final tableaus for producin. new
origins, liecords kept of the new origir values obtained from the initial and
final tableaus with the JOT indicate that the latier were generally far superiorg
as expected. Eecau.e of this double conmputation of w™, however, the timss
recorded for the NOT are slightly distorted. It should purticularly be ncoted
that the times for problems solved by the NOT in chly & fov pivols may be mis-
leading since the svalustions nade before the start of Gomery's algorithm
are the nost extensive,

4 record of the lower bounds esfsblighad with the NOT did not alwayrs
prove helpful in determining how large ihe deviation from the wctual mirimum,
if it existed might be. In two cases the difference betwasn a feasible sclu-
tion and the lower bound was reduced to less than five, yet there wus no
indication that the minimum had been obiained. AU the opposite extrems,
eight of the problems which were solved correctly differed by as much as
LOE from the lower bound % the point wieres ths correct sclution was [irst
signalled feasible.

m

Table 11 hes been desigmed to show She workings of the NOT in moe

detail, The four problems veferred wo in the table are not represenisi ve.

but were chova to illustrate 2ame of thz variation ja the rasuits obiaies

- ¢ 17 g q od . 2 A e~k o st ne - by o ) Lot

by the NOT. ‘Ihe rows nder eash problea heading show the pivots, the ¢ ma.

e el et o .. . . = .

the values of the W,y the solution valdes of the variables, anu zhe chje .t oo
{ _ : the ohbjje 4

£ N . .

function value for each feasible solution reached in suezassion on a Sivan

trial, The new origins which huve no oihor “nform tica resordod cilh liem

BN

viere vot used successfully to reich a aalut o

\




One trial only ie illustretad for probiems 1 and 2, while two triale

are shown [or wroplems 3 and £ lreblawm 2 is the only one of the four for

whicn the HOT cblawned the nioimum solubion and recorded the fect. The most
4¢ know of the soluticns for the other problems is that they are feasible,
The pivots for the HOT shown in Teble [T, unlike those for the NOT in
Tables I and I1, do aot include th: pivets required initially by the simplex
metood. Thus in Problem 1 the new ordgin that was first obtained gave a

feasible golution without vequiriiiz any pivots with Gonory'a algorithm.

[

crovlem 1 is interesting on two additional counts. ho solutien obtainsed after
the first one wus oble to improve on it. Morecver, the alpgorithm devotad
389 pilvots* to the foweth new origin, and obtained notlhing, though the

differance Letween this crigin and the previcus new origin was simply a unit

; e s U
reduction in the value of w, .
25

Mirst new origin oo Problem 2 4id not give a feasible soluticn, and

o
Lilg

it toel @ surplus pivets bo {ind one.  The second origin was not only feasible,

ouh twened oub Lo ve the mininum gslvtion, though this was not verified until

tha answexr had boen potben twice wove, L5 pivots later,

Problen 3 demonstraics tuwo nore of the eccentricibies of the NOT. Here

Lhe point of interest is in the differcence betwsen the results of the two solu-

Lim triale.  The best answer obta‘ned in both trials wos the same, and edch

. woed . . UMY
of the w/* Jor thils selution was greater than or equal to the W of the new
&

orizin which preduced it. The first solution obtained on the second trial,
hovever, was better than the corrsuvonding one of the first trial, theugh both
were bused on the same ordin. The superior solution wes obtained in fewer

vivots  and has the novel property that ons of the variables which was given

aoaonzare value in the aew origin vag vero in the final answer.

lhe simplex method reguirea 4 civots on this problem.,
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In Froblem 4 the second trial agrees .ith the first on three of the
feazible solutions, but registers one additional solution, which turas out to
be the best one found. This sclution; like the firsi one cbttained in the
second trial of Problem 3, was based on a nmew origin that sould not safely
have been rslied upon to produce it. Honetheless, none of the thsoretically
safe orlgins were successful in producing the solution on either trial. Such
results suggest that a study of pivol sequencineg for tue NOT mighi prove
nore fruitful than for Gomory's alpgorithm alonn.

Finally, a word about the NOT applied tn problems of & larger size.
«e have received five probiems from Ralph Gomory, and have tested the NCT and
the liaadon livle an four of thew in the came war as the rulso were testaed on

the eight variable «izht inequality preblems. (Vs currently do not have
&> 1

my

enough compuler mewory space to handle tne [i0%h problem.) The handom fuls
was unsuccesaful in solving any of the four problens using the 400 pivot
cutelT and neking four solution atiempts at each probleri. The NOT ebtained
feasible solutions te three, though we con't know whethor these solubtione ars
optiiral.
The results of the HOT on these problems are itemized in Tabls 11,

~e guypest, hosever, ihat the NOT's performance on lorge vioblems in gensreal
may be somevhat different than for the ,robloms used here. The reason i ih:
the solulions which the BOT found were oblained by rounding the varssboes fron
he simplex tableeus viward.  The otructure of the probloems maxes it

b [

that the Prasible selutlons ars jeed, bub {for an adsguate test of the 07T,

proulers with optinal solutions substaniially reioved frim any oviained by

upward rowiding should be tried.
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AZPLNDIX A

Tiw £ Tateger Vrosger Frogoemenag Algordthi

Vbl Sawnad >4

Yoom ef the Problen. Miniosgr wh 4 0, subject o wh 2 ¢, w2 0, W inheger
N the abore notation wosnd Y oase row vectors, b end © are 2olumn vectors,

b.—) e s soadtar, and A s a metriy, all of which are sntirely inbeger, and of

@rwatona su-h habl lhe problen s well defines.

3 L T st T e N RPL Y 4 NS ) WL AR ST R S L

Por g sebpeg

wre frgation 10 Y cepresent “he vedor covvsspopding te the 1 th row of T.
By T < T\‘ we wids uesn hat ’s"_i tg 7ex cographleally less than ’l’

Gomeeyrs alghe e assanes That T O { tsxd cogvaphically! for &l § AR
Wy ace s, 8 fethed #ists for making ham 32}, The algorithm {s called

'S

e alt ategse wsthod berauss 2l coafliclenta in the tabless ,emain integer

sal wiation given what *he antwvies *n the initia) tablean

8

Pap ginptic myon dewopinoug Souncey's algerithm in the diagram whish
fol.owe, ter the we rcix 'nitially consieting of 4 and - 7 be dwnofed simply
by A and 1= the s tor nil 1%y constghling of « and O be drnoted by ¢

dga'n, ‘n snbsequaent tableauws. 4 and o wil! denote the matrix and weotor

{zand 'r The zames Jcesarions ag ‘he origlnad A and o
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DTAGRAM FOR COHORY'S ALGORTTHYM

Sae up prodlen.  Greaiw /0 Ara ther fomputation is

the in‘tial tablenn 7\( one OT Rore nega‘?iwx e 2 —3 | ended. Answer ls

indicators; i.e. is f displaysd in tablean.®”

jng\<o {for some 7 /é
P .

Salest & negatlce Indisntor \
by s davigion vils, 4y
stois o ocoiuwn § fald roluam

< bhe fnl b pivotal colum.

Y

Tor each b (excapt TV add d
timas the I8h row of the new
tablaa s to the ith row of ola
5 ?can_, Enter resntis ‘n {th
Por e tho cows Frrowhich e }<("’" e of new nablean

L ,
|

(‘.

o e S T i

Min T, DeViee Dby - on s

ar the Ith row of the nf
k the Tth row of

LA o
aw 7ablazgu,

ror paE N
¥ ST

=W
2 g
2
=3

Call row

)

2 t

] : o

ant dy Yhe pivo & Tt "
H

13 a max

For [ 311( 3{‘, Vo b,' 0 ALY
gurh that dg‘(?. and thut

sowrutations 1€ end only
« N 3 PR o
4 by w__n, wit'y the zame

I
i

T
K
3

N

i

{

st

i

. = i i

For cech 1 such thet a. J<O, comuut.e (Entsr new columm in bebleza :
= ;J'u will have o negative inil |

ator, Call the naw colum |

tthe new plwveunl column. {

5
3
=
<
te
.
N
o~
[
o]
-
."?
I
[
ot
[
=

N ‘ - 3 LY
fimd _ o e i e e om e
= Fer ell 1. campute the

vy s v ccl uan a3

. B 1 0 ok Pe ¢ 3
I ey 0 Tor all 4 (when © '\0) the irablais has ne solidion.
Lo

** Ths cbjective funciion value (negatively sigrnod) aposave in the
]

location imitielly occuples by b, end the solutiou vector w - u”
aM:‘%r in the porididon of the bobtos vuwe Toilintiy conor e v in e 0

TN
T 5




Theorem 4. Let Zwa v u

fron a simplex tablean T

pertaining to the tableau

exannle, En-'!{&k“ = ¢! rafe

o.T“-

S

appears ~ Finally, 1

{rom the pivotal

]
L

g sbtained

APFENDIX B

represent the constraint chosen for pivot

Lot the "prime” superscript (') denote values

Ts derived from ™ by the pivot operatlong fov

vz %0 the pivotal constraint from T as it

0 0 '
snd w, dencte Lhe components of v derived

J
, and let {w?..)"

o
'.I_‘

A
ew

and (wo Yt denote the
o

it appears in T

Al

:
T

in

fron the same constraint ax

n y . 0 Oy P00,
Then 1 = §', 3 - i'. and W, (wj"..-’, Wj = H”)‘o
Proef: To show this it 19 necessary Tirst to show that if & /b <a /b
% S/ Py,
for the pivotal constraint, then -2 /o <. ./b | after the pivot.
n'’ @ out
This implies in partienlar that j© = 1. The sinplex alsoritha defines
o 3 /g, o = b b oa /i whar e i el N P
By " Oy ard b= b o boa fa,, where 8, /by« rinfa c/Hk‘” i ak»(O.,
@ subscript i, it should be noted. is dafined the same for ¢ie pivet
and the ns iﬂ'xl"o”' noTor an crain’
5 ant new crigin value wy of Theoran | fov any constraint
which ie eligible [ow pivetdng. Ue then may wrile

(1) e /b, = Cafe /(b bafa,) -1 2. /o, 3 /({2 /b Yo, 8))
{ VA S AR D, &, L &, VAR -y s VA Fo) B,

G- L k i 1 (3. IR k)i Al
Inapeciion of this latter fore shows Lhe @sertion of owier pressevatisg

ce i

vaiid, Thus
“e row observe that

whgug . i
whers ax"-/b1~b

g / T

= min(-g
K

i

Pearranging {7) once agein, O may be vriiten sa
. . N Vs 18 - Sy .
0 \a.v/bl_,/,'\{‘.\I/'.. Ly cv.i\, ¢ .',/._Hr,-:? ':“j\’
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L
e

wlth » substituted for k. %o vse the follcwirg relaiions ¢

simplaxe

e oo e, = LrB s L cbi/é’,g;‘: [

i~

Than

(c/a?)( . :51:
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